ASTM International Interlaboratory Detection Estimate (IDE) & Interlaboratory Quantitation Estimate (IQE)

> Nancy E. Grams Advanced Earth Technologies, Inc. & Chairman of the IDE/IQE Task Group

> > TNI Savannah – Feb. 2011

Task Group Contact Information

Administrative: Nancy Grams
<u>Nancygrams@aol.com</u>
(847) 464-1123

Technical: David Coleman david.coleman@alcoa.com (724) 337-5913

ASTM International (astm.org)

- •108 years
- •30,000 volunteers
- •130 Technical Committees
- Extensive Tiered Balloting
- Strict Adjudication of Negative Votes

Committee D19 on Water

- Established in 1932
- Chair: Jack Hall
- 300 Current Standards (two volumes)
 - Subcommittee D19.02 on Quality
 - Chair: John Hubbling
 - Task Group on D and Q
 - Chair: N. Grams

Universe of D & Q

	Detection	Quantification
Among	Interlaboratory	Interlaboratory
	Detection (IDE)	Quantification (IQE)
Labs		
Within La	Intralaboratory	Intralahoratory
	mualaboratory	minalaboratory
	Detection (WDE)	Quantification
		(WQE)
abs		

99 %/95% Interlaboratory Detection Estimate (IDE) for Analytical Methods with Negligible Calibration Error

Designation: D 6512–00 Interlaboratory Quantitation Estimate

D/Q Process Overview

Basic Steps:

- Concentration Design (D₂₇₇₇)
- Optional Outlier Removal (D2777)
- Model Standard Deviation (IDE/IQE)
- Regress (Calibration) Recovery (IDE/IQE)
- Calculate CL/DE (IDE)
- Calculate QE (IQE)

D2777 – Method Precision & Bias

- First approved in 1969
- Committee recognized importance of validating methods
- Multi-concentration/Multi-lab
- Inter-laboratory SD (not pooled SD)
- Used to establish P&B statements

Optional Outlier Removal

- Grubbs tests as per D2777 (lab and point)
 IDE & IQE discuss outlier removal
 - Recommend graphing data points
 - Visual examination as well as Grubbs
- Identified potential outliers should be examined
- Removal based on real-world reason

Model Standard Deviation

(vs. Concentration)

- Use simplest model that fits the data
 - Constant
 - Straight Line Standard Deviation
 - Exponential
 - Hybrid (aka Rock & Lorinzato or General Analytical Model)
- For use in Lst. Sq. vs. Weighted Lst. Sq.
- For use in setting tolerances (DE)
- Used for calculation of IQE (RSD%)

Conc. Recovery Regression (True vs. Measured)

- Linear relationship only model
- Least Squares or Weighted Least Squares
- Used to convert measured results to true concentrations (how much in the real world)
- Establishes the bias relationship
- Often termed 'calibration relationship'

Detection Estimate

- Based on Dr. Currie's theory (IUPAC)
 - Critical Level & Detection Level
- Tolerance Interval
 - 90%Coverage, 95% confidence
- CL: Upper tolerance at zero conc.
 - False Positives (99% control)
- DL: Upper tolerance at CL
 - False Negatives (95% control)

Statistical Intervals Discussion

Confidence interval

Used to quantify the uncertainty in a population parameter at a specified confidence level

"With a specified (e.g., 95%) confidence, the interval covers the true [mean] of the population"

Statistical Intervals

• Prediction interval

Used to quantify the uncertainty in a <u>single future</u> <u>measurement</u>

"With a specified (e.g., 95%) confidence, the next measurement will be within the calculated interval"

Statistical Intervals

<u>Tolerance interval</u>

Used to quantify the uncertainty in a certain portion of future measurements

"With a specified confidence (e.g., 95%), a specified portion (e.g., 90%), of future individual measurements will fall within the calculated interval"

Quantification Estimate

- Known and Controlled Precision (%RSD)
 - Related to significant digits (D. Coleman)
- Can specify %RSD DQO (10%, 20%, etc.)
- Bias addressed as in DE
- Required to be above DE
- No tolerance intervals, no statistical control

Summary

- IDE and IQE are the wisdom of the majority from a solid consensus process, a diverse and venerable Committee and dedicated and animated Task Group
- Procedures are detailed and technical as well as a consensus balance of practical vs. scientifically correct.
- WDE and WQE in process
- Software makes calculations simple

Summary

- Using weighted least squares complex or necessary?
 - Found that very few analytes have constant SD
- Multiple concentrations complex or necessary?
 - Measurement uncertainty
- Modeling standard deviation complex or necessary?
 - Constant is not a good assumption
- Dealing with bias (real world) complex or necessary
 - Measurement uncertainty?

DQCALC Software:

- Based on Excel
- User friendly and user manual included
- On ASTM.org for \$75
- Put data in simple Excel file
- Open DQCALC and follow prompts
- Must make some decisions
- Output file is saved

DQCALC Software Use

- Open, opt in or out of outlier removal
 - Set outlier criteria
- Get input file, enter name, comments
- Create output file
- Click to perform initial calculations
- Evaluate Diagnostic/Descriptive Graphics
- Select Model for Standard Deviation
- Software automatically updates calcs based on user's model choice
- Save and exit(or start another calculation)